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ABSTRACT 

We show t h a t  a cer ta in  class of measures  arising from generalized Riesz 

p roduc t s  is singular.  In  par t icular ,  cu t t ing  and  s tacking (i.e. r ank  one) 

t r ans fo rma t ions  whose cuts  do not  grow too rapidly, have  s ingular  max ima l  

spec t ra l  type.  T h e  precise condi t ion is ~-~=l(1/w2) = oo, where  w~ is 

t he  n u m b e r  of  cuts  at  s tage  n. 

1. I n t r o d u c t i o n  

Let T be a rank one transformation on an interval. Such a transformation may 

be obtained inductively by the cutting and stacking method. For a detailed 

exposition of such constructions see Friedman [6]. This class of transformations 

has proven to be a rich source of examples in ergodic theory for transformations 

exhibiting different kinds of properties. 

Rank one transformations are defined inductively on towers. A tower H is a 

{I~}i=l, where T is defined on collection of disjoint intervals of the same length, h 
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all but the last interval by just mapping linearly the interval Ii onto the next 

I~+1, and h is called the height of H. 

:T 

Ih 

Ia 
TT I: 
TT I1 

Figure 1. Rank one construction. 

Start with the initial tower H0 = [0, 1] of height 1. Let H~ denote the nth tower 

and h,~ its height. Suppose Hn has already been defined. Hn consists of intervals 

of the same length which form a partition of [0, r~], for some r,~ > 1, stacked one 

on top of the other in some order. To construct H~+I, divide the tower Hn into 

w~ subcolumns of equal width. Then, on top of the kth subcolumn, add a number 

an(k) of consecutive disjoint intervals. The added intervals have the same width 

as the subcolumns of H~ and are taken to the right of r~. That is, they form a 
W n  partition of [r~, rn+l], where rn+l = rn + ~-~k=l an(k) l, I =length of subcolumns 

of H~. Then Hn+l is the column obtained by stacking these subcolumns one on 

top of the previous one, starting from the left. 

an(1) an(2) "'" an(k-----~)an(wn) ~ a ~ ( k ) ]  

J D--an( l I 
I wn t [..jan(l) • 

Bn+l  

Figure 2. (n + 1)th-tower. 

By construction, Hn+l has height 

(1.1) hn+l = wnh,~ + an(l) + . . .  + a~(w,~). 

We require that  wn _> 2 for all n. Also, we require that the total measure be 

finite, i.e. oo ~ n = l  IH,~\Hn-I[ < c~, so that T is defined on a finite measure space. 
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By rescaling by an appropriate constant r, we may assume U~_o H~ = [0, 1] := 

X. Let B~ denote the base of the tower H~. Then 

1 
(1.1) Bo = [0, 1/r], Bn = [0, ]. 

r W 0 . . . W n - - 1  

Thus, we consider T to be defined on X = [0, 1], endowed with the Borel 

sigma algebra and Lebesgue measure. By construction, T is a measure preserving 

invertible point transformation. 

Put  
1 

f ~ ( x ) -  1B (x) 

the characteristic function of the nth-base, normalized so that  the 2-norm equals 

1. Denote by Urf the operator UTf(x) ---- f (T- lx) .  By construction of T, UT is 

a unitary operator in L2(X). 
Notice that  

(1.2) C = HTk[B ~lh~--1t~176 
I . ' t  \ n / J k = O  J n : O  

generates a dense subalgebra of the Borel a-algebra (here we are using the metric 

(modulo sets of measure zero) given by d(A, B) =Lebesgue measure of AAB). 
Then the subspace generated by the span of {UTk(fn): 1 < n < oG 0 < k < h~} = 

span of {1Tk(Bn): 1 < n < ~ , 0  < k < h~} is dense in L2(X). 

1.1. SPECTRAL MEASURES. Given T: X ~-* X a measure preserving invertible 

transformation, to any f ~ L2(X) there corresponds a positive measure a f  on 

S 1, the unit circle, defined by &f(n) = (U~f, f). With the above notation, let 

(7  s : O ' f  . 

De~nition 1.1: The maximal spectral type of T is the equivalence class of Borel 

measures a on S 1 (under the equivalence relation #1 = P2 if and only if Pl <<: it2 

and it2 < <  #1), such that  a f  < <  a for all f C L2(X), and i fv  is another measure 

for which a f  < <  u for all f E L2(X) then a < <  v. 

By the canonical decomposition of L 2 (X) into decreasing cycles (see appendix 

in Parry [11]) with respect to the operator UT, there exists a Borel measure 

a = ay for some f G L2(X),  such that  a is in the equivalence class defining the 

maximal spectral type of T. By abuse of notation, we will call this measure the 

maximal spectral type measure, but it can be replaced by any other measure in 

its equivalence class. 
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LEMMA 1.2: a is absolutely continuous with respect to ~ - o  2-nan" 

Proo~ Given f E L2(X), since the family C defined in (1.2) generates a dense 

subalgebra, f can be approximated by functions g,~ C L2(X) which are constant 

on the levels of the tower Hn. Then, gn = Fn(UT)fn for some polynomial Fn(z), 

and 

da I = dag. + dvn = ]Fnl2dan + dvn 

where IlVnll --+ 0 as n --+ c~. Thus, if A is a set such that an(A) = 0 for all n, 

then 0 < a i ( A )  = ~n(A) < II~nll -~ 0 as n - ~  ~ .  . 

We will exploit a recurrence relationship between the spectral measures an. 

The bases Bn's are recursively related in the following fashion (see Figure 2): 

Bn = B,+I  U Th"+s"O)B,+l U T2h"+s"(2)B,+I U. . .  u T(~"-l)h"+~"(~"-~)Bn+l, 

IB~I = w~lBn+l [ ,  

where sn(k) = e, (1)  + - . .  + an(k). Lett ing 

(1.3) P,~(z)- 1 w,~-i 
k=0 

where sn(0) = 0, we obtain fn = P,(UT)fn+I. Iterating this relationship, we 

have 
m--1 

(1.4) dan = IP=12dan+l . . . . .  H IP=+r 
j=0  

Thus, an is absolutely continuous with respect to an+m for all m > 0, and the 

continuous parts of these two measures are equivalent. 

T H E O R E M  1.3: Let dpn = 1-Ij=o [Pjl 2dA. Then p~n(k) - do(k) --* 0 as n --* oo. 

In other words (since []Pn{[ = 1) ao is the weak, limit of the p,~. (A denotes the 

normalized Lebesgue measure.) 

Proofi A proof of this theorem can be found in Choksi and Nadkarni [5]. An- 

other proof which was kindly supplied by a referee is the following: 

Let Rn = P 0 " "  P,, and Q~ = [Rn[ 2. To show that  dao = w* lirr~__,oo QndA 

it suffices to show that ~o(m) - Q , (m)  ~ 0 as n ~ ce for all m. But dao = 

Q J a n + l ,  and 

(1.5) [(ro(m)-O,,~(m)[= jr <- IJl_>h.+,E [ Q n ( m - j ) [  
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because I&n+l(j)l _< 1 for all j and I&,~+l(j)l = 0 for 0 < IJl < hn+l by definition 

of an+l. On the other hand, by (1.1) and (1.3), deg(P~) = h,~+l - h,~ - an(wn)  

(see definition of deg in (2.2)). Then by construction, 

n 

deg(Rn) = deg(Po) + . . .  + deg(Pn) _< Z hk+l -- hk = hn+l - h0 < hn+l. 
k=O 

Also, deg(Qn) = deg(Rn), and hence (~,~(k) -- 0 for Ikl > h,~+l. Moreover, 

/}n(k) = 0 or ( w 0 . "  wn) -1/2 for all k by definition of Rn. Since Qn -- R,~/%n, we 

have that  for Ikl < h~+l, 

h +l -Ikl 
(1.6) 0 < Qn(k) _< 

W 0 � 9  W n 

From (1.5) and (1.6) it follows that  if Iml < hn+l, 

m 2 
I 0(m) - Q (m)l < 2 0 as  n - +  oo,  

W 0 � 9  W n 

finishing the proof. | 

The same argument shows that each of the measures an enjoys this property, 

that  is, they are the weak* limit of the measures obtained by replacing dan+m 

in equation (1.4) by the Lebesgue measure. 

We will show that  ao is singular to Lebesgue measure for a class of rank one 

transformations whose cutting numbers {wn}~=o do not grow too rapidly. 

THEOREM 1.4: I f ~ = l ( 1 / w , ~ )  2 = oo, then a0 2_ )~. 

The proof of Theorem 1.4 also shows that  an is singular to Lebesgue measure 

for all n > 0. Then, by Lemma 1.2, a is also singular to Lebesgue measure. 

COROLLARY 1.5: I f ~ 7 = l ( 1 / W n )  2 = o o ,  then a _1_ A. 

Properties implying the singularity of Riesz products have been studied for 

some time (see [8], [10], [12], and [13] for some references). In particular it is 

known that  a classical Riesz product is singular if its coefficients are not in ~2. In 

Section 2 we adapt the proof of this result given by Peyri~re [12] to the generalized 

Riesz products p~, and thus prove Theorem 1.4. Another proof can be obtained 

by adapting Bourgain's approach in [4]. In fact we shall borrow some ideas from 

both methods. 
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1.2. COMMENTS AND REMARKS. Certain classes of measure preserving trans- 

formations are already known to have singular spectral type. For example, Baxter 

[3] proved that any a-rigid transformation, with a > 1/2, has singular spectral 

type. (An a-rigid transformation is a measure preserving transformation such 

that  there exists a sequence {nk}k~__l for which limk--.o~ m(T n~ A N A) >_ am(A) 

for all measurable sets A.) 

Naturally, one asks the following question. 

QUESTION 1.6: Does any a-rigid transformation have singular spectral type? 

It follows from Theorem 1.4, that for any 0 < a < 1, one can construct a-rigid 

(but not/3-rigid for/3 > a) rank one transformations with singular spectral type. 

See Example 3.1 below. Moreover, one can construct rank one transformations 

without rigidity which enjoy this property: 

PROPOSITION 1.7: There are mixing rank one transformations with singular 

spectral type. 

Bourgain's result [4] on the spectral type of Ornstein's mixing rank one trans- 

formation already proves this proposition. However, Ornstein's transformation 

involves a random construction. In Section 3, we give a proof of Proposition 1.7 

using an explicit construction. 

These examples seem to support the suspicion of many that singular spectral 

type may be a characteristic of rank one transformations. 

CONJECTURE 1.8: Every rank one transformation has singular spectral type. 

A positive answer to this conjecture would be the link between Kalikow's and 

Host's results on the problem of whether 2-fold mixing implies 3-fold mixing, 

since the first proved it for mixing rank one transformations and the second for 

transformations with singular spectral type. 

Lastly, we mention that the condition in Theorem 1.4 is, of course, not the best 

possible. Indeed, we can construct transformations violating the hypothesis of 

the theorem but which have singular spectral type. The simplest example is the 

rank one transformation obtained by setting wn = n and an(i) = 0 for 1 < i < n, 

for all n. Since no extra steps are added on any tower, this transformation is 

rigid (i.e. 1-rigid) and, by Baxter's condition, has singular spectral type. 

A natural conjecture, intermediate between Theorem 1.4 and Conjecture 1.8, 

is the following: 
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oa 2 
C O N J E C T U R E  1.9: If  ~n=l  c,  = oe for some choices of coefficients cn of the 

polynomials IPnl 2, then a • ~. 

2. P r o o f  o f  T h e o r e m  1 .4  

p,  r LEMMA 2.1: Let { n } n = l  be a family of trigonometric polynomials on  S 1 with 

positive coefficients. Let dp, = n k = l  IPk[ 2dA" IfllP~ll2 = 1 and [1Hin__l P~ll2 = 1 

for all n, then lim,~__.~ p, exists in the weak, topology. 

Proos By the hypothesis, the measures {p,~}n~__l satisfy: 

(a) p ,  is a probability measure on S 1 for all n, 

(b) ~n+l(j) _> thn(j) for all j and n. 
n Indeed, let Qn = 1-Ij=l IPJl 2, By hypothesis, IP,~+l[ 2 = 1 + Rn where Rn is a 

trigonometric polynomial with positive coefficients and /~n(0) = 0. Thus 

P~+,(J) --- On(J) + O,  * R , ( j )  >_ On(J )  = Pn(j). 

From (a) and (b) it follows that limn__.~ Pn exists in the weak, topology. | 

This lemma implies that all of the weak, limits we shall write down later 

actually exist. So from now on we omit mentioning this fact every time. 

PROPOSITION 2.2: Let {Pn},~_0 be a sequence of trigonometric polynomials as 

in Lemma 2.1. The following two conditions are equivalent: 

(a) inf{lIPnl. . .  P~k I11; nl < n2 < "-. < nk} = 0, 

(b) the measure d# = w* lim,~__.o~ Hj~__I IPj I2d/~ is singular. 

Notes: 

1. This proposition is the key element in our proof. It allows us to drop to a 

subsequence, instead of working with the full sequence of polynomials: 

p COROLLARY 2.3: Let { ~}~=1 and # be as in Proposition 2.2. Let {P~}~=I be 
k a subsequence and let dv = w* limk~oo 1-Ij=l IPnj 12dA. K v  is singular, so is p. 

2. The direction (a) ~ (b) is also a key element in Bourgain's proof in [4]. 

We are using this idea as well as the implication (b) ~ (a). 

The proof of this proposition relies heavily on the fact that the measure is the 

weak* limit of such products. One can easily construct a non-singular measure 

which is a weak* limit of functions Ifnl 2 with IIf~112 = 1 and f If~(x)ldx ~ 0 as 

?'/ ---~ OO. 
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Proof of Proposition 2.2: Let A -- Lebesgue measure, and 

N 

dp = w* lim H IP~I2dA" 
N --* o o  

n ~ l  

By Lemma 2.1, the limit measure # exists and is a probability measure. Also, 

for any fixed finite sequence nl < - .-  < nk, the measure 

N 

da = w* lim H IP~I2dA 
N ---* o o  

~ t ~  1 . . . . .  n k 

exists and is a probability measure. Moreover, d# = f2da, where 

f =lP,,...P,~r. 
( a )~ (b ) :  To prove that  # • A, it suffices to show that  for any e > 0, there is a 

set E with A(E) < e and # ( E ' )  < e. Let 0 < e < 1. 

Choose nl  < . . .  < nk such that  f fdA < e 2. By Chebyshev's inequality, the 

set E = { f  > e} satisfies: 

A(E) _ llfll~le ~ c21e = e, 

and 

tt(EC) = /E dtt -= /E f2da ~-- /E  c2da ~- c2 < o o 

(b)=~(a): Given 0 < e < 1, there exists a continuous function ~ such that:  

0_<~_<1 ,  # ( { ~ # 0 } ) < e ,  and A ( { ~ % l } ) < e .  

N 
Let fN = 1-In=l IP,~] �9 Let A -- {~ r 1}; then 

But since d# - -w* limN~oo IfNI2dA, 

N ~ o o  
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Thus, taking N sufficiently large, f f N  dA < 2v/e. Since e is arbitrary, 

limN~oc f f N  dA = O. | 

The next theorem illustrates Peyribre's technique and is the backbone of the 

proof of Theorem 1.4. 

THEOREM 2.4 (Peyri~re [12]): Let # be a Borel probabil i ty  measure on S 1. I f  

m there exists an increasing sequence o f  integers { k}k=l SUCh that  

(a) i4mk) = ak, a.d {ak}7=l r e and 

(b) f~(mk -- mj) = akffj i l k  r j ,  

then # • A. 

k oo Proof." Let f k ( z )  = z m~. Then {f  }k=l is a bounded orthogonal system in 

L2(A), and {(fk - k)}k=l is an orthogonal system in L2(p). Also, since p is a 

finite measure, Ilfk -~kllL~<.) is bounded in k. 
C c~ e2 oo _ Let { k}k=l E be a sequence such that 5kCk _> 0 and Y-~-k=l akck = OC. Such 

a sequence exists since {ak}k~__l ~ t? 2. Then, the sequences of functions ~ = 1  Ckfk 

and }-'~'-~=1 ck( fk  -- ~tk) converge in L2(A) and L2(p) respectively. Taps, there is 

a sequence nj  such that 

nj 

Ckfk converges A-a.e. as j --+ co, 
k = l  

and 
nj 

E ck( fk  -- ak) converges tt-a.e, as j ~ co. 
k = l  

Then, both series cannot converge for the same z because their difference is 

nj 

E CkCt k ~ 0~. 
J k=l  

Hence, the set E on which the first series converges is a Borel set such that  

A(E C) = 0 and #(E)  = 0, which ends the proof. | 

2.2. F O U R I E R  C O E F F I C I E N T S  O F  G E N E R A L I Z E D  R I E S Z  P R O D U C T S .  In light of 

Theorem 2.4, we need to look at the Fourier coefficients of the generalized Riesz 

products defining a0. 

Recall, from equation (1.3), that  the polynomial P~ has the form 

. CO Pn(z)  = ~ ( z  + z C~ + z C~ + . "  + zC~ 
x/wn 
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where co = O, ci = hn +an(i), i = 1 , . . . ,  Wn -- 1. That  is, Cl, c2 , . . . ,  cw=-i are the 

heights of the first wa - 1 subcolumns of the tower Ha. Now form the product 

1 
(2.1) Rn = PaPa = 1 + - -  

Wn 
E z(CO+...+c~)-(co+...+cj). 

o<_i#j<_w,~-I 

Define the degree of any trigonometric polynomial f by 

(2.2) deg(f)  -- max{JkJ: ](k) # 0}. 

Let da -- deg(P,~) = deg(Rn). From equations (1.1) and (1.3) of the introduc- 

tion, we have 

(2.3) 

(2.4) 

da = ha+l - hn - aa(Wa) < ha+l, 

ha ~_ hn+l/Wn <_ ha+l/2.  

With the help of Proposition 2.2, instead of working with the full sequence of 

polynomials {Pa}a~__0, we can drop to a subsequence. Indeed, to show that  a0 is 
k a singular measure, it suffices to show that  w* limk-,oo IIj=l R% dA is a singular 

OO measure for some sequence {nk}k=l. 

Assume {nk}k=l~176 is a sequence satisfying nk+l _> nk +3.  Let Qk . . . .  Rn, Rn~. 

Then, from (2.3) and (2.4) it follows that  

1 h (2.5) < n +l, 

and telescoping, since nj + 1 < nj+l ,  

(2.6) 

qk :=deg(Qk) = dal + da2 + " "  + dn~ 

<_(hn~+l - hal) + (ha2+1 - ha2) + ' "  + (hn~+l - ha~) 

< hnj, + l .  

Now we will look at the Fourier coefficients of the polynomials Qk. First, we 

need to examine Ra~. 

Under the above hypothesis, the polynomial Rn~ has isolated Fourier coeffi- 

cients at 0 and dn~, in the sense that  /~n~ = 0 on a large interval of integers 

around 0 and da~. 
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LEMMA 2.5: If  {nk}k~176 is a sequence such that nk+l _> nk + 3, then the Fourier 

coemcients of Rnk satisfy: 

(a) /~nk (0) = 1, and/~n~ (n) = 0, 0 < In[ < h~k, 

(b) /~n~(d~k) = 1/w~ k a n d / ~ ( n )  --- 0, d~ k - h~ k < In[ < d~ k. 

Proof: Recalling tha t  Rn k is given by (2.1), let di,j = ( C o + . . . + c i ) - ( c o + . . . + c j ) ,  

i r j .  Since di,j • 0 if i r j ,  it is immediate  t ha t / t~k  (0) = 1. The rest of (a) 

follows from the fact tha t  for i > j ,  did _> ci _> h ~ ,  and by symmetry,  [di,jl ~_ h~k 

for i < j also. 

To prove (b), note tha t  d~ k = maxdi , j  = d ( ~ - l ) , 0 .  This implies our claim 

t h a t / t n k  ( d ~ )  = 1/wnk. 

Lastly, suppose i > j and ( i , j )  is not the pair ( w ~  - 1,0). Then  did = 

cj+l + �9 " + c~ is a sum over a proper  subset of the indexes {1, 2 , . . . ,  w ~  - 1}. 

Therefore,  d ~  - d i d ,  being the sum over the complement  of this subset, satisfies 

d~ k - di,j ~_ min{c l , . . . , cw~k-1}  _> hn~. Tha t  is, there is a gap of at least 

h ~  between d.~ and the previous non-zero Fourier coefficient, which proves (b). 

| 

LEMMA 2.6: With the above notation, if  {nk }k~ is a sequence such that nk+l >_ 
k oo nk + 3, then the Fourier coemcients of the {Q }k=l satisfy: 

(a) Qk+m(n) = Qk(n) whenever Inl < qk, m > O, 

(b) 0k(0)  = 1 and Qk(dnk) -- 1 / w ~ .  

Proo~ Proper ty  (a) and the fact tha t  Ok(0) = 1 are immediate  consequences 

of (2.5), (2.6) and par t  (a) of Lemma 2.5. 

Now consider the coefficients of Qk+l = QkR,~,+I on the interval 

[d~k+l - qk,d~k+~ + qk]. Since qk < h~+~/4 (see (2.5) and (2.6)), it is clear 

tha t  (using Lemma 2.5 (b) for Rnk+l): 

(2.7) Q.k+l(n+d~k+~)=Qk(n) 1 forallnE[--qk,qk].  
Wn~+l 

In part icular,  Qk+l(d~+~)  = Qk(O)/wn~+~ = 1/w~+~ which proves (b). | 

Given a sequence n l  < n2 ( . . . ,  define a to be the probabil i ty measure 
k 

da = w* limk--.oo l-Ij=l IP~ [ 2dA" 

LEMMA 2.7: Let {nj}~= 1 be a sequence satisfying nj+l >_ nj + 3. Then there is 

a sequence {mj}~= 1 C N such that: 
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(a) &(=t=mj) = 1/w,~, 

(b) &(mj + mk) = &(mj)&(mk), j r k. 

Proof'. By definition of a and with the notation preceding the lemma, we have 

&(n) = l imk_~ (~k(n) for all n. 

Let m k =  dnk. Then, from Lemma 2.6, it follows that 

(2.8) &(n) = 0k(n) whenever In] _< qk, 

and that  &(ink) = 1/w,~ which proves (a), since a is real. 

To prove (b), let j < k and apply equation (2.7) for k instead of k + 1, with 

n = +mj.  Noting that m s E support of 0 j  C support of 0k-1 C [-qk-1, qk-1], 

we get from equations (2.7) and (2.8) that 

1 
 (mk + ms) = + ms) = 

W n  k 

= = 

which proves (b). | 

Proof of Theorem 1.4: We will apply Lemma 2.7 to a sequence {nj}~= 1 which 
O 0  in addition satisfies ~ j = l  1/w~j -- oc. 

By hypothesis, we have 

(X3 ~ n = l  w--'~nn ~ n = 3 j  n =  "--1 n 2 

So, at least one of the three sums is c~. Thus we can choose {nj}~= 1 such 
Or that nj+l = nj + 3 and ff-~d=l 1/w2j = c~. By Lemma 2.7, the measure da = 

k w* limk.-.o~ l-[j=1 [Pn~ [2dA satisfies the hypothesis of Theorem 2.4. Thus, a • A, 

and by Corollary 2.3, a0 • A. | 

3. E x a m p l e s  

Example 3.1: Any rank one transformation with liminf wn < c~ has singular 

spectral type. 

The proof is immediate from Theorem 1.4. This shows that, for example, 

Chacon's transformation with wn = 2 and a,~(1) = 0, a,~(2) = 1, which is 1/2- 

rigid, has singular spectral type. Similarly, for arbitrarily small a > 0 one can 
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construct a-rigid (but not ~-rigid for 3 > a) rank one transformations with 

singular spectral type. That  is, for a = 1 / ( M  + 1), let wn = M ,  an(k)  = k - 1 

for k - -  1 , . . . , M -  1 and a n ( M )  -= O. 

Next, to prove Proposition 1.7, we recall a construction of Adams and Friedman 

[2]. 

Definition 3.2: A s ta i r case  c o n s t r u c t i o n  is a rank one transformation T such 

that,  at each step, the numbers of intervals added, an(k),  are defined by 

an(l)  = an(w~) = 0, an(k)  = k -  1 for 2 < k < wn - 1. 

Thus, every staircase construction is completely determined by the sequence 

{w~}~=l.  We denote such a transformation by T = T{w~}. 

Let {rk}~=l and {mk}~_l be two sequences defined inductively as follows: 

ml = 1 and r l  > 3. Assume that m l , . . . , m k - 1  and r l , . . . , r k - 1  have already 

been defined. Let sj -- rl for ml _< j < mz+l, l < k - l ,  and sj = r k - i  for 

j _> mk-1. The transformation S = T{sj} is "uniform ~esaro" (see [2]). In 

particular, there exists N such that for n _> N 

1~-i~o 1 A(I) 1 kA(1) n = S  x1(x)- --- 

for all positive integers l and all levels I in the mk-1 tower. Choose rk such that  

rk >_ k N  

and choose mk such that  the height hm~ of the mk tower satisfies 

hmk >_ kr 2. 

With the sequences {rk}~=l and {mk}~=l  as above, construct {wn}~=l by 

putting 

Wn = rk for mk <_ n < mk+l. 

THEOREM 3.3 (Adams and Friedman [2]): The  staircase T = T{w~} with 

{w~}n~ 1 as above, is mixing. 

P r o o f  o f  Proposit ion 1.7: To define the example, choose a staircase transfor- 
2 mation as in Theorem 3.3, with the additional property that mk+l - mk ~_ r k. 

Then 
c~ 1 c~ m~+l--1  1 

E E E -  : n=l  w---~n -~- k=l  n=mk r2 >- k=l  1 ec, 
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and we can apply Theorem 1.4. | 

Another example which proves Proposition 1.7 is the standard staircase trans- 

formation (wn = n). This transformation has recently been shown to be mixing 

by Adams [1], and also to have singular spectral type by Klemes [9]. 
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