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ABSTRACT
We show that a certain class of measures arising from generalized Riesz
products is singular. In particular, cutting and stacking (i.e. rank one)
transformations whose cuts do not grow too rapidly, have singular maximal
spectral type. The precise condition is 2211(1 Jw2) = oo, where ws, is
the number of cuts at stage n.

1. Introduction
Let T be a rank one transformation on an interval. Such a transformation may
be obtained inductively by the cutting and stacking method. For a detailed
exposition of such constructions see Friedman [6]. This class of transformations
has proven to be a rich source of examples in ergodic theory for transformations
exhibiting different kinds of properties.

Rank one transformations are defined inductively on towers. A tower H is a
collection of disjoint intervals of the same length, {I;}?_,, where T is defined on
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all but the last interval by just mapping linearly the interval I; onto the next
I;y1, and h is called the height of H.

—_—1
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L

Figure 1. Rank one construction.

Start with the initial tower Hy = [0, 1] of height 1. Let H,, denote the nth tower
and h,, its height. Suppose H,, has already been defined. H,, consists of intervals
of the same length which form a partition of [0, r,], for some r,, > 1, stacked one
on top of the other in some order. To construct H,.1, divide the tower H, into
w, subcolumns of equal width. Then, on top of the kth subcolumn, add a number
an (k) of consecutive disjoint intervals. The added intervals have the same width
as the subcolumns of H, and are taken to the right of r,. That is, they form a
partition of [r,, 7nt1], where 741 = 7 + Y421 an(k) 1, I =length of subcolumns
of H,,. Then H,; is the column obtained by stacking these subcolumns one on
top of the previous one, starting from the left.
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Figure 2. (n + 1)th-tower.
By construction, H,, has height

(1.1) hnt1 = Wohy + an(1) + - -+ + an(w,).

We require that w, > 2 for all n. Also, we require that the total measure be
finite, i.e. Y oo | |[Ho\Hp—1| < 00, so that T is defined on a finite measure space.
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By rescaling by an appropriate constant r, we may assume Uf;o H,=[0,1]:=
X. Let B, denote the base of the tower H,. Then
1

9
TWo...Wnp—1

(1.1 By =1[0,1/r}], B,=10 ]

Thus, we consider T to be defined on X = [0,1], endowed with the Borel
sigma algebra and Lebesgue measure. By construction, T is a measure preserving
invertible point transformation.

Put
1

fn(x) \/l—BT' B, (1')
the characteristic function of the nth-base, normalized so that the 2-norm equals
1. Denote by Uz f the operator Ur f(z) = f(T~'z). By construction of T, Ur is
a unitary operator in L(X).
Notice that

(1.2) C = {T*(Bn)}rzg Yoo

generates a dense subalgebra of the Borel o-algebra (here we are using the metric
(modulo sets of measure zero) given by d(A, B) =Lebesgue measure of AAB).
Then the subspace generated by the span of {UL(f,): 1 <n < 00,0 <k < h,} =
span of {17k(g,): 1 <n < 00,0 <k < hy,} is dense in L*(X).

1.1. SPECTRAL MEASURES. Given T: X — X a measure preserving invertible
transformation, to any f € L?(X) there corresponds a positive measure o; on
S1, the unit circle, defined by &(n) = (URf, f). With the above notation, let

On =0f, -

Definition 1.1: The maximal spectral type of T' is the equivalence class of Borel
measures o on S (under the equivalence relation pu = 2 if and only if u; << po
and p2 << py), such that oy << o forall f € L?(X), and if v is another measure
for which o; << v for all f € L%(X) then o << v.

By the canonical decomposition of L2(X) into decreasing cycles (see appendix
in Parry [11]) with respect to the operator Ur, there exists a Borel measure
o = oy for some f € L?(X), such that o is in the equivalence class defining the
maximal spectral type of T. By abuse of notation, we will call this measure the
maximal spectral type measure, but it can be replaced by any other measure in

its equivalence class.
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LEMMA 1.2: o is absolutely continuous with respect to > v ;2 "0n.

Proof: Given f € L?(X), since the family C defined in (1.2) generates a dense
subalgebra, f can be approximated by functions g, € L?(X) which are constant
on the levels of the tower H,. Then, g, = F,,(Ur)f, for some polynomial F,(z),
and
doy =dog, +dv, = |Fy|2doy, + dvy,

where ||v,]| — 0 as n — oo. Thus, if A is a set such that ¢,,(A) = 0 for all n,
then 0 < 0f(A) = v, (A) < |lvnl| = 0 as n — . 1

We will exploit a recurrence relationship between the spectral measures o,,.

The bases B,’s are recursively related in the following fashion (see Figure 2):

B, = Bn+1 U Th"+s"(1)Bn+1 U :Z-a2h,,+.«3ﬂ(2)Bn_'_1 U.--U T(w"_l)h"+s"(w"_1)Bn+1,
|Bn| = wn|Bn+1l,

where s,(k) = an(1) + -+ + an(k). Letting
wp—1

(13) Z) \/u}_n Z Zkh +sa(k)

where 3,(0) = 0, we obtain f, = P,(Ur)fn+1. Iterating this relationship, we
have

m—1

(1.4) don = |Pa|*dopyr =+ = [] [Pasil*donsm.
§=0

Thus, o, is absolutely continuous with respect to 0,4, for all m > 0, and the
continuous parts of these two measures are equivalent.

THEOREM 1.3: Let dpn, = [[;—,|P;|?dA. Then p,(k) — do(k) — 0 as n — oo.
In other words (since ||pn|| = 1) 0g is the weakx limit of the p,. (A denotes the

normalized Lebesgue measure.)

Proof: A proof of this theorem can be found in Choksi and Nadkarni [5]. An-
other proof which was kindly supplied by a referee is the following:

Let R, = Py--- P, and Q, = |R,|?>. To show that dog = w* lim,,_,e0 QndA
it suffices to show that Go(m) — Qn,(m) — 0 as n — oo for all m. But dog =
Qndo,y1, and

(1.5)  |do(m) = Quim)| = Y Qu(m = Nonta()| < Y. |Qn(m - 3)l

J#0 [312hns1
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because |6,4+1(j)| < 1 for all j and |6,,41(j)| = 0 for 0 < |j| < hp41 by definition
of o,41. On the other hand, by (1.1) and (1.3), deg(Pr) = hny1 — hn — an(wn)
(see definition of deg in (2.2)). Then by construction,

deg(R,) = deg(Po) + - - - + deg(Py,) < th+1 = hk = hny1 — ho < hnyy.
k=0

Also, deg(Q,) = deg(R,), and hence Q,(k) = 0 for |k| > hny1. Moreover,
f?n(k) =0 or (wg - - -wy)~Y/? for all k by definition of R,. Since Q, = R, R,, we
have that for |k| < hn41,

hn+1 - |k'

(16) 0< Qu(k) < =7

From (1.5) and (1.6) it follows that if |m| < hp41,

20(m) = Gulm)] <2—T—— 0 asn oo
e

finishing the proof. [

The same argument shows that each of the measures o,, enjoys this property,
that is, they are the weak* limit of the measures obtained by replacing do,+m
in equation (1.4) by the Lebesgue measure.

We will show that o is singular to Lebesgue measure for a class of rank one
transformations whose cutting numbers {w,}5% . do not grow too rapidly.

THEOREM 1.4: If Y >  (1/wn)? = oo, then og L A.

The proof of Theorem 1.4 also shows that o, is singular fo Lebesgue measure
for all n > 0. Then, by Lemma 1.2, o is also singular to Lebesgue measure.

COROLLARY 1.5: If 327 (1/w,)? = o0, then o L A.

Properties implying the singularity of Riesz products have been studied for
some time (see [8], [10], [12], and [13] for some references). In particular it is
known that a classical Riesz product is singular if its coefficients are not in £2. In
Section 2 we adapt the proof of this result given by Peyriére [12] to the generalized
Riesz products py, and thus prove Theorem 1.4. Another proof can be obtained
by adapting Bourgain’s approach in [4]. In fact we shall borrow some ideas from
both methods.
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1.2. COMMENTS AND REMARKS. Certain classes of measure preserving trans-
formations are already known to have singular spectral type. For example, Baxter
(3] proved that any a-rigid transformation, with a > 1/2, has singular spectral
type. (An a-rigid transformation is a measure preserving transformation such
that there exists a sequence {ng}?2, for which limg_,co m(T™ A N A) > am(A)
for all measurable sets A.)

Naturally, one asks the following question.

QUESTION 1.6: Does any a-rigid transformation have singular spectral type?

It follows from Theorem 1.4, that for any 0 < a < 1, one can construct a-rigid
(but not B-rigid for 8 > a) rank one transformations with singular spectral type.
See Example 3.1 below. Moreover, one can construct rank one transformations

without rigidity which enjoy this property:

PROPOSITION 1.7: There are mixing rank one transformations with singular

spectral type.

Bourgain’s result [4] on the spectral type of Ornstein’s mixing rank one trans-
formation already proves this proposition. However, Ornstein’s transformation
involves a random construction. In Section 3, we give a proof of Proposition 1.7
using an explicit construction.

These examples seem to support the suspicion of many that singular spectral

type may be a characteristic of rank one transformations.
CONJECTURE 1.8: Every rank one transformation has singular spectral type.

A positive answer to this conjecture would be the link between Kalikow’s and
Host’s results on the problem of whether 2-fold mixing implies 3-fold mixing,
since the first proved it for mixing rank one transformations and the second for
transformations with singular spectral type.

Lastly, we mention that the condition in Theorem 1.4 is, of course, not the best
possible. Indeed, we can construct transformations violating the hypothesis of
the theorem but which have singular spectral type. The simplest example is the
rank one transformation obtained by setting w,, =n and a,(i) =0for 1 <i < n,
for all n. Since no extra steps are added on any tower, this transformation is
rigid (i.e. 1-rigid) and, by Baxter’s condition, has singular spectral type.

A natural conjecture, intermediate between Theorem 1.4 and Conjecture 1.8,
is the following:
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CONJECTURE 1.9: If Y20 | ¢2 = oo for some choices of coefficients ¢, of the

n

polynomials |P,|?, then o L ).

2, Proof of Theorem 1.4

LEMMA 2.1: Let {P,}52 be a family of trigonometric polynomials on S* with
positive coeflicients. Let dp, = [[r_; |Psl?dX. If |Polla =1 and || [T, Pill2 =1
for all n, then lim,,_, o, p, exists in the weakx topology.

Proof: By the hypothesis, the measures {p,}5>, satisfy:

(a)  pn is a probability measure on S* for all n,

() fns1(4) = pn(y) for all j and n,

Indeed, let Q. = [T}_, |P;|>. By hypothesis, |Po41|> = 1+ R, where R, is a
trigonometric polynomial with positive coefficients and R,,(0) = 0. Thus

Prs1(G) = On(F) + Qn x R () > Qn(h) = pn(j)-

From (a) and (b) it follows that lim,_,. p» exists in the weakx topology. 1

This lemma implies that all of the weak* limits we shall write down later

actually exist. So from now on we omit mentioning this fact every time.

PROPOSITION 2.2: Let {P,}5%, be a sequence of trigonometric polynomials as
in Lemma 2.1. The following two conditions are equivalent:

(@) Inf{||Py, -+ Po,ll1in1i <m2 < --- <ng} =0,

(b) the measure du = w* limy 0 [15—; | Pj |2d) is singular.

Notes:
1. This proposition is the key element in our proof. It allows us to drop to a
subsequence, instead of working with the full sequence of polynomials:

COROLLARY 2.3: Let {P,}?%, and y be as in Proposition 2.2. Let { Py, }?2, be
a subsequence and let dv = w* limy— H;c:l |Pn, 12dA. If v is singular, so is pt.

2. The direction (a) = (b) is also a key element in Bourgain’s proof in [4].
We are using this idea as well as the implication (b) = (a).

The proof of this proposition relies heavily on the fact that the measure is the

weak* limit of such products. One can easily construct a non-singular measure

which is a weakx limit of functions |f,|? with [|f4]lo =1 and [ |f,(z)|dz — 0 as

n — o0,
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Proof of Proposition 2.2: Let A = Lebesgue measure, and

N
—an* L 2
du=w Jim [] 1PaF

By Lemma 2.1, the limit measure u exists and is a probability measure. Also,
for any fixed finite sequence n; < --- < ng, the measure

N
A * 12 2
da=w" lim 1:[ | Py |2dA
nFENY,..., ny
exists and is a probability measure. Moreover, duy = f?da, where

f=|Pa - Pnl
(a)=>(b): To prove that p L A, it suffices to show that for any ¢ > 0, there is a
set E with A(E) < e and pu(E°) <e. Let 0 <e < 1.

Choose n1 < -+ < ng such that [ fdA < 2. By Chebyshev’s inequality, the
set E = {f > €} satisfies:

ME) < lfl/e < /e =e,

and

,u(E°)=/ d#:/ f2da§/ 62da562<6.
c c Ec

(b)=>(a): Given 0 < € < 1, there exists a continuous function ¢ such that:
0<9p<l, p({p#0})<e, and A{p#1})<e
Let fyv = [I_, |Pal- Let A= {i # 1}; then
/de)\:/de)\-i- fn dx
A Ac

1/2
<MY+ (/ f% d,\) A(A)1/2
Ac
1/2
< Vet (/f}"wdA) .

But since dp = w* limy_, o |fn]2d),

Jdim [ rhear= [odu<ulto#0p<e
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Thus, taking N sufficiently large, [ fv dA < 2/e. Since € is arbitrary,
limy_o [ fnv dA=0. |

The next theorem illustrates Peyriére’s technique and is the backbone of the

proof of Theorem 1.4.

THEOREM 2.4 (Peyriére [12]): Let u be a Borel probability measure on S'. If
there exists an increasing sequence of integers {my}$2 ; such that
(a) p(mk) = ay, and {ax}32, & £* and
(b) A(mi —my) = ard; ifk # j,
then p L A.
Proof: Let fr(z) = z™. Then {fi}3>, is a bounded orthogonal system in
L?(A), and {(fx — @k)}32, is an orthogonal system in L2(u). Also, since y is a
finite measure, || fr — G||z2(.) is bounded in k.
Let {cx}32, € £? be a sequence such that dxci > 0 and Z,;“;l arcr = 00. Such
a sequence exists since {ax}32; & ¢2. Then, the sequences of functions Y _p_, ¢k fx
and Y r_; ck(fx — @) converge in L2(\) and L?(p) respectively. Thus, there is
a sequence n; such that
chfk converges A-a.e. as j — 00,
k=1

and

j
Z ck(fr —@k) converges p-a.e. as j — oo.
k=1

Then, both series cannot converge for the same z because their difference is

j
E Crar — 00.
k=1 J

Hence, the set E on which the first series converges is a Borel set such that
A(E°) = 0 and p(FE) = 0, which ends the proof. |
2.2. FOURIER COEFFICIENTS OF GENERALIZED RIESZ PRODUCTS. In light of

Theorem 2.4, we need to look at the Fourier coefficients of the generalized Riesz

products defining oy.
Recall, from equation (1.3), that the polynomial P, has the form

P—n(z) — (ZCO + ZCO+61 + zca+01+cz + . + zc0+c1+02+...+cwn_1)’

1
vV Wn
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where ¢cg = 0, ¢; = hpn+an(i),i=1,...,w, —1. That is, ¢1,¢2,...,¢y,—1 are the

heights of the first w, — 1 subcolumns of the tower H,. Now form the product

(2.1) Ri=P.Pa=1+— o gleokted=leotte),
Wn o<isi<wa—1

Define the degree of any trigonometric polynomial f by
(2:2) deg(f) = max{[k|: f(k) # 0}.

Let d,, = deg(P,) = deg(R,,). From equations (1.1) and (1.3) of the introduc-

tion, we have

(23) dn = hn+1 - hn - an(wn) < hn+1,
(2.4) hn < Angr/wn < hag1/2.

With the help of Proposition 2.2, instead of working with the full sequence of
polynomials {P,}32,, we can drop to a subsequence. Indeed, to show that oy is
a singular measure, it suffices to show that w* limg_.o H;;l Ry, d) is a singular
measure for some sequence {ni}32,.

Assume {n;}32, is a sequence satisfying ngy1 > ne+3. Let Q. = Ry, -+ Ry,
Then, from (2.3) and (2.4) it follows that

1
(2’5) hnk+1 S Zh’nk+17
and telescoping, since n; +1 < nj1,

gk :=deg(Qr) = dn, +dn, + - +dn,
(2-6) S(hn1+l = hny) + (hnz+1 - hnz) +--+ (hnk+1 - hnk)

<hnk+1-

Now we will look at the Fourier coefficients of the polynomials Q. First, we
need to examine R,,.

Under the above hypothesis, the polynomial R,, has isolated Fourier coeffi-
cients at 0 and d,,, in the sense that Rn,, = 0 on a large interval of integers

around 0 and d,, .
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LEMMA 2.5: If {ng}32, is a sequence such that nyy, > ny + 3, then the Fourier
coefficients of R, satisfy:

(a) R, (0)=1, and R, (n)=0,0 < |n] < hn,,

(b) Rp, (dn,) = 1/wn, and Ry, (n) =0, dn, — hn, < |n| < dn,.

Proof: Recalling that R, is given by (2.1),let d; ; = (co+- - -+¢i)—(co+- - -+¢;),
i # j. Since d; ; # 0 if i # j, it is immediate that Ry, (0) = 1. The rest of (a)
follows from the fact that for i > j, d; j > ¢; > hn,, and by symmetry, |d; ;| > hn,
for i < j also.

To prove (b), note that d,, = maxd;; = d(wnk—l),O' This implies our claim
that R, (dn,) = 1/w,,.

Lastly, suppose ¢ > j and (i,j) is not the pair (w,, — 1,0). Then d;; =
¢j+1 + -+ -+ ¢; is a sum over a proper subset of the indexes {1,2,...,wn, —1}.
Therefore, d,,, —d; ;, being the sum over the complement of this subset, satisfies
dp, — dij > min{cy,...,Cp, ~1} > hn,. That is, there is a gap of at least
hn, between d,, and the previous non-zero Fourier coefficient, which proves (b).
|

LEMMA 2.6: With the above notation, if {ny}3>, is a sequence such that ny,1 >
nk + 3, then the Fourier coefficients of the {Qx}52; satisfy:

(2) Qitm(n) = Qx(n) whenever |n| < g, m > 0,

(b) Qi(0) =1 and Qk(dn,) = 1/wn,.

Proof: Property (a) and the fact that Qx(0) = 1 are immediate consequences
of (2.5), (2.6) and part (a) of Lemma 2.5.

Now consider the coefficients of Qr41 = QkRn,,, on the interval
[dnisy — Qo> dngyy + ge]- Since ge < hn,,, /4 (see (2.5) and (2.6)), it is clear
that (using Lemma 2.5 (b) for R, _,):

(2.7) Qrr1(n+ dnpyr) = Qk(n)w for all n € [—qx, qx).
T4l
In particular, Qk+1(dnk+1) = Qk(O)/wn,e+1 = 1/wWn,,, which proves (b). ]
Given a sequence ny; < ng < ---, define a to be the probability measure

da = w* limg_o H§=1 | Pn, |%dA.

LEMMA 2.7: Let {n;}32; be a sequence satisfying nj11 > n; + 3. Then there is
a sequence {m;}32; C N such that:
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(a) &(xm;) = 1/w,,,

(b) &(m; £ my) = &(m;)a(ms), J # k.
Proof: By definition of @ and with the notation preceding the lemma, we have
é(n) = limg— o Qi (n) for all n.

Let my = dp,. Then, from Lemma 2.6, it follows that

(2.8) a(n) = Qx(n) whenever |n| < g,

and that &(my) = 1/w,, which proves (a), since « is real.

To prove (b), let j < k and apply equation (2.7) for k instead of k + 1, with
n = xm;. Noting that m; € support of Q; C support of Qr_1 C [~qk-1,qk-1),
we get from equations (2.7) and (2.8) that

1

&(mi £mj) = Qr(mi £ my) = Qr—1(m;)

= &(£m;)a(my) = &(my)a(me),
which proves (b). |
Proof of Theorem 1.4: We will apply Lemma 2.7 to a sequence {n;}32; which

in addition satisfies 22| 1/w2 = oo.

By hypothesis, we have

o
R e DD
n=1n n=3j n=3j—1 n=3;-2
So, at least one of the three sums is co. Thus we can choose {n;}$2, such
that nj41 = n; +3 and 322, 1/wi = co. By Lemma 2.7, the measure do =
w* limg_, o0 ]_[;c=1 | Pn, |2d) satisfies the hypothesis of Theorem 2.4. Thus, a L A,
and by Corollary 2.3, og L A. |

3. Examples

Example 3.1: Any rank one transformation with iminfw, < oo has singular
spectral type.

The proof is immediate from Theorem 1.4. This shows that, for example,
Chacon’s transformation with w, = 2 and a,(1) = 0, a,(2) = 1, which is 1/2-
rigid, has singular spectral type. Similarly, for arbitrarily small o > 0 one can
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construct a-rigid (but not S-rigid for 8 > ) rank one transformations with
singular spectral type. That is, for o = 1/(M + 1), let w,, = M, an(k) =k -1
fork=1,...,M —1 and a,(M) =0.

Next, to prove Proposition 1.7, we recall a construction of Adams and Friedman
2].
Definition 3.2: A staircase construction is a rank one transformation 7' such

that, at each step, the numbers of intervals added, a,(k), are defined by
an(1) = an(ws) =0, an(k)=k—-1 for2<k<w,-1

Thus, every staircase construction is completely determined by the sequence
{wn}3%;. We denote such a transformation by T' = Ty, 3.

Let {ry}32, and {my}3>, be two sequences defined inductively as follows:
my = 1 and r;y > 3. Assume that my,...,mi_1 and r1,...,rx—1 have already
been defined. Let sj =r form; < j<myy, !l <k—1,and s; = rp_; for
j > mi_1. The transformation § = Ty, y is “uniform Cesaro” (see [2]). In

particular, there exists N such that for n > N

1 n—1

= S"(@) = AD)

=0

1
< =
<P

for all positive integers [ and all levels I in the my_; tower. Choose rj such that
ry > kN
and choose my such that the height h.,, of the my tower satisfies
B, > kr,%.

With the sequences {rz}3>; and {ms}32, as above, construct {wn}%>; by
putting
w, =T for mg <n < mpq.
THEOREM 3.3 (Adams and Friedman [2]): The staircase T = T(y,} Wwith

{wn}22.; as above, is mixing.

Proof of Proposition 1.7: To define the example, choose a staircase transfor-
mation as in Theorem 3.3, with the additional property that me41 — mg > ri.

Then
=1
Zw_%:

n=1

mk+1—1

o0
2) 1=0,
k=1

<
?s-wl =

o0
k=1 n=m;
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and we can apply Theorem 1.4. |

Another example which proves Proposition 1.7 is the standard staircase trans-
formation (w, = n). This transformation has recently been shown to be mixing

by Adams [1], and also to have singular spectral type by Klemes [9].
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